VUB: Department of Materials and Chemistry MACH/ Research Group Electrochemical and Surface Engineering SURF
Vrije Universiteit Brussel

General expertise of the research group

The Electrochemical and Surface Engineering group (SURF) has a long tradition in research on electrochemical systems, and is internationally recognized for its expertise in unravelling mechanisms of electrochemical processes related with corrosion and protection, passivation of metals, localized corrosion, surface treatments and coatings. The multidisciplinary research strategy of the group is employed based on complementary macroscopic and local electrochemical methods, own developed computational software for process simulation and in-situ/ex-situ surface analytical techniques. SURF is in the unique position of having advanced research technology in-house and has own infrastructure of about 6 million €. SURF has a large network of companies supporting the research.

Specific hydrogen- related expertise & research topics

  • Study of the hydrogen-steel interactions from a SURFACE perspective: influence of surface state, oxide types…. on the hydrogen-steel interaction mechanisms
  • Use and development of electrochemical methods to study hydrogen-metal interactions at the H-steel surface/interface, based on voltammetry, local methods (e.g. Scanning Kelvin Probe Force Microscopy) etc.
  • Electrochemical modelling of the hydrogen-steel interactions (FEM modelling, in-house developments)
  • Electrochemical analysis of new electrode materials for hydrogen fuel cells.

Available equipment/tools:

  • Materials’ surface analyses: XPS, FEG-AES, Tof-SIMS, FEG-SEM/EDX/WDX, Raman, Ellipsometry, FTIR, nano-IR / EIS combination, AFM
  • Electrochemical experimental analyses:
    • Macroscopic: polarisation methods (OCP, CV, …), Impedance spectroscopy (in-house developed ORP-EIS), climate chamber…
    • Microscopic: AFM, SKPFM, SVET, SECM
  • Electrochemical FEM modelling (own developed approaches & expertise)

Participating in FL/B/EU funded projects with H2 related research:

  • AVN – Association Vinçotte Nuclear, PhD projects, on Surface state impact of hydrogen-steel interactions
  • SBO project DeMoPreCi, SIM Maduros program, on electrochemical permeation modelling
  • FWO fundamental research PhD grant, on Hydrogen in Duplex SS steel.
  • Industrial research with Aperam, Toyota, Airbus.

International collaborations:

  • Industrial:
    • APERAM
    • TOYOTA
    • AIRBUS
  • Academic:
    • Prof. Fréderic Christien, Ecole des Mines, Saint-Etienne, France, for collaboration on Scanning Kelvin Probe Force Microscopy.
    • Dr. Lars Jeurgens, EMPA, Switserland, for micro-capillary cell analysis.

Main relevant publications

  1. B. OZDIRIK, K. BAERT, T. DEPOVER, J. VEREECKEN, K.VERBEKEN, H. TERRYN, I. DE GRAEVE, ‘Development of an Electrochemical Procedure for Monitoring Hydrogen Sorption/Desorption in Steel’, JOURNAL OF THE ELECTROCHEMICAL SOCIETY 164(3) (2017) C747-C757.
  2. B. OZDIRIK, T. DEPOVER, L. VECCHI, K. VERBEKEN, H. TERRYN, I. DE GRAEVE, ‘Comparison of Electrochemical and Thermal Evaluation of Hydrogen Uptake in Steel Alloys Having Different Microstructures’, JOURNAL OF THE ELECTROCHEMICAL SOCIETY 165 (11) (2018) C787-C793.
  3. B. OZDIRIK, T. SUTER, ULRIK HANS, T. DEPOVER, K. VERBEKEN, P. SCHMUTZ, L. P. H. JEURGENS, H. TERRYN, I. D. GRAEVE, ‘Study of the hydrogen uptake in deformed steel using the microcapillary cell technique’, CORROSION SCIENCE DOI:10.1016/J.CORSCI.2019.04.029.
  4. L. VECCHI, DARJA PEČKO, et al. H. TERRYN, ‘Numerical interpretation to differentiate hydrogen trapping effects in iron alloys in the Devanathan-Stachurski permeation cell’, CORROSION SCIENCE DOI:10.1016/J. CORSCI.2019.04.008.
  5. L. VECCHI, et al. H. TERRYN, ‘Modelling of hydrogen permeation experiments in iron alloys: Characterization of the accessible parameters – Part I – The entry side’, ELECTROCHIMICA ACTA 262 (2017) DOI: 10.1016/j. electacta.2017.12.172.
  6. L. VECCHI, et al., ‘Modelling of hydrogen permeation experiments in iron alloys: Characterization of the accessible parameters – Part II – The exit side’, ELECTROCHIMA ACTA 262 (2018) 153.
  7. L. CLAEYS, T. DEPOVER, I. DE GRAEVE, K. VERBEKEN, ‘Electrochemical hydrogen charging of duplex stainless steel’, CORROSION 75(8) (2019) p.880-887.
  8. L. CLAEYS, I. DE GRAEVE, T. DEPOVER, K. VERBEKEN, ‘Impact of hydrogen and strain rate on the martensitic transformations and mechanical properties of 304L stainless steel: hydrogen embrittlement or hydrogen enhanced ductility?’, ACTA MATERIALIA accepted MSA_140079.

Contact persons

Iris De Graeve

iris.de.graeve@vub.be

VUB | Department of Materials and Chemistry MACH/ Research Group Electrochemical and Surface Engineering SURF

Vrije Universiteit Brussel
Pleinlaan 2
1050 Brussels

SURF